In this section, we’ll look a little more closely at some of these everyday applications.
Stepper motors for 3D printers
Common 3D printer parts lists almost always include a stepper motor of some description. This is because the use of a stepper motor in a 3D printer is an highly accurate and cost-effective way of being able to perform very precise, accurate actions and rotations while the printer is attempting to translate information from digital scans into physical 3D objects.
Stepper motors and drivers in 3D printers allow for tightly controlled movement along both the X, Y and Z axis, either separately or concurrently, meaning that extreme accuracy of movement and positioning is achievable without the need for encoders and other additional software or sensors.
Most 3D printers will incorporate multiple stepper motors - they’re typically found in both the build platforms themselves and the filament extruders, where they’re used to help pull in filament and control the consistent, even supply of material to the machine throughout the full duration of a print run.
Stepper motors for CNC
Stepper motors are an alternative option to servo motors for powering most types of CNC machinery. CNC applications include a very wide range of manufacturing processes in which pre-programmed computer software controls the operation and physical movement of machine tools in factory and fabrication settings.
While stepper motors in CNC applications are often seen as a more ‘budget’ alternative to servo motors, this is an oversimplification based on knowledge of older technologies that isn’t always strictly accurate today. Stepper motors are indeed typically less expensive than servo motors for the same power, but modern versions tend to be just as versatile. As a result, stepper motors are far more commonly available, and found in a much wider range of machines and systems, from machine tools to desktop computers and automobiles.
CNC stepper motors also have one very key advantage over servo motors in that they don’t require an encoder. Servo motors are inherently more complex to understand and operate than stepper versions, and part of this complexity is the fact that they include an encoder, which is more prone to failure than most components in the otherwise reliable servo motor. Stepper motors don’t need an encoder, theoretically giving them even greater reliability than servos.
Furthermore, the fact that stepper motors are also brushless (unlike servo motors) means that they won’t require regularly scheduled replacement, provided their bearings remain in good working order.
Stepper motors for Raspberry Pi
Stepper motors are an extremely common peripheral for adding to Raspberry Pi single-board computing modules for home enthusiast users teaching themselves the fundamentals of basic computer programming skills.
Raspberry Pi starter kits are usually sold in a very barebones configuration, with the idea being that the individual user will add whatever additional parts they like to their system in the order they choose to learn about them, adding to their skill set by learning to control new components using programming languages such as Python.
Among the Raspberry Pi user community, learning to manipulate and control small, inexpensive stepper motors is very commonly seen as a logical next step after learning to control LED on/off cycles and other simple switch or buzzer types. In effect, by linking a couple of these stepper motors in sequence, home hobbyists can begin to create a simple and programmable robot.
Many suitable types of stepper motors are available on the market for this type of application, starting from extremely inexpensive 5V versions that are easy to interface with headers on the Raspberry Pi motherboard.
Stepper motors for cameras
Stepper motors are widely used across a range of different applications in high-end camera technologies. They’re used both to control extreme precision internals, such as in-lens autofocus and aperture settings, as well as in the housings and external mechanics of security cameras and remote monitoring systems.
In particular, stepper motors and motorised camera sliders allow for very smooth operation of camera-positioning rigs, meaning that footage taken from security devices can be kept reliably free from potentially problematic image distortion caused by physical motion of the camera around its field of view.
Stepper motors provide several other attractive features for use in camera and video surveillance positioning systems, including full torque at standstill, extremely precise and immediate response times for all movement inputs, consistent repeatability of predetermined movements, and simple open-loop controls defined by fixed step sizes.